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SUMMARY

In this thesis, we present novel statistical methods for detecting abnormalities in a se-

quence of observations. We focus on two topics in statistics: change-point detection and

survival analysis, and we demonstrate the application of our new methods in real data prob-

lems in the healthcare and the sensor network domains. We are particularly interested in

cases in which the observations or predictors are related, and we summarize the relations

graphically to develop new methodologies based on the graphs.

xiv
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CHAPTER 1

INTRODUCTION AND BACKGROUND

The thesis consists of three major studies. The first is on sequential graph scan statistics in

sensor networks. Graph change-point detection problems have wide applications in graph-

ical data types, such as social networks and sensor networks. Given a sequence of random

graphs with fixed vertices and changing edges, we are interested in detecting a change that

causes a shift in the distribution of a subgraph. We present two graph scanning statistics

that can detect local changes in the distribution of edges in a subset of the graph. The first

statistic assumes a parametric model, i.e., the observations on the edges are Gaussian ran-

dom variables, and the change shifts the mean of a subgraph. We derive the scan statistic

and present a theoretical approximation to the false alarm rate, which is verified to be accu-

rate numerically. The second statistic adopts a nonparametric approach based on k-Nearest

Neighbors (k-NN). We demonstrate the efficiency of our detection statistics for ambient

noise imaging, using a real dataset that records real-time seismic signals around the Old

Faithful Geyser in the Yellowstone National Park.

The second is on the application of survival analysis in a healthcare problem. Sur-

vival prediction is key to making efficient organ allocation decisions and optimizing patient

outcomes. In this paper, we develop a statistical machine learning model that accurately

predicts the post-transplant survival curves for pediatric recipients of kidney transplanta-

tion. The prediction is made based on statistically selected risk factors. We develop a new

predicting model with higher concordance index than the existing models.

The last is on graph based variable selection in survival analysis. Variable selection

is a fundamental problem in survival analysis. When developing an accurate survival pre-

dicting model, identifying the proper variables to include in the model is often essential.

In many applications, there exists an underlying graphical structure for the predictors. For

1
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example, some predictors may have strong correlations or interactions. When predicting

the survival probability of a transplant recipient, it is important to consider the compatibil-

ity of the recipient and the organ donor. In such cases, incorporating the predictor graph

into the penalty function for variable selection would allow more accurate inference and

prediction. In this section, we propose to incorporate a fused lasso type of constraint in the

Cox proportional hazard model, which takes advantage of the predictor graph generated by

the relations among the predicting variables. We derive theoretical performance guarantees

to the model and demonstrate the benefits of it using simulations and real data examples.

2
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CHAPTER 2

SEQUENTIAL GRAPH SCANNING STATISTIC FOR CHANGE-POINT

DETECTION

Change-point detection is a fundamental problem in social networks [1], sensor networks,

and power networks. In this paper, we use graph scanning techniques [2], [3] to study the

question of how to detect a change in the distribution of the graphs. In particular, we are

interested in detecting a local change in the graph.

This means, when the change happens, only a subset of the graph, or a subgraph, of

known size is affected by the change and acquires a different distribution. The observed

change in distribution for the graphs are caused by a local change, while the distribution

for the rest of the graph remains the same. The problem of local change-point detection is

challenging in that, first, we do not know whether there is a change, and second, if there is

a change at some unknown time, it is not clear which subgraph contains the change.

A motivating application of our study is monitoring ambient noises in seismic sensor

networks. In ambient noise imaging, because the signals are weak, it is difficult to observe

any signal using observations from a single sensor. Fortunately, when we construct the pair-

wise cross-correlation between the sensors, there will be coherent signals between affected

sensors who observe changes in the subsurface structures. Specifically, at the time of the

change, the cross-correlation function between the sensors affected by the change will have

a significant peak. Between the affected sensors and the unaffected sensors, and among

the unaffected sensors, such a waveform of the cross-correlation function does not exist.

Therefore, this problem, mathematically, becomes detecting a local change in a sequence

of graphs.

We present two approaches for constructing scan statistics to detect a local change in

a sequence of graphs, the parametric and the non-parametric approach. For the parametric

3



www.manaraa.com

approach, we assume Gaussian graphs and apply a scan statistic based on counting the

maximum number of edges in a subgraph of fixed size. We derive an accurate theoretical

approximation to the false alarm rate of the scan statistic based on selective inference [4],

which can be used to set the threshold for the false alarm rate without large scale simulation.

For the non-parametric approach, the scan statistic is constructed using similarity measures

on the subgraphs and k-Nearest Neighbors (k-NN). We demonstrate the efficiency of the

non-parametric approach on real data for the seismic sensor network in Yellowstone [5].

This work is related to change-point detection, graph scan statistics, and community

detection. Graph scan statistic for the stochastic block model, which counts the maximum

number of edges in the subgraphs of an Erods-Renyi graph, has been considered in [6]. A

likelihood ratio test for detecting communities in the Erdos-Renyi graph is studied in [7].

A non-parametric graph scan statistic based on k-NN is discussed in [8] and [9].

2.1 Problem Formulation

Suppose we observe a sequence of undirected graphs G1, . . . , GN , where N is the time

horizon. For t = 1, . . . , N , let Gt = {V,Et}, with V and Et being the set of vertices

and the set of edges respectively. Let V i be a size-m subset of the nodes V , i = 1, . . . , d,

where d =
(
N
m

)
if all possible subsets are considered. In networks, usually d �

(
N
m

)
.

Let Si = {V i, Ei} be the subgraph containing V i and the edges between them, which

change over time. Denote S as the set of all possible subgraphs, then S = {Si, . . . , Sd}.

Assume a change-point happening at an unknown time τ and the change is contained in the

graph S∗ = {V ∗, E∗}, such that before and after τ , the distribution of the edges in E∗ are

different. At time t, denote Si(t) = {V i, Ei
t} ⊂ Gt.

When there is a change, we assume E∗1 , . . . , E
∗
τ−1 are i.i.d. distributed according to

some distribution P , and E∗τ . . . , E
∗
T are i.i.d. distributed according to another distribution

Q. The problem of detecting a local change becomes the following hypothesis testing

4
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problem.

H0 : Ei
t ∼ P, t = 1, . . . , N, ∀ Si ∈ S;

H1 : Ei
t ∼ Q, t ≥ τ, Si = S∗,

Ei
t ∼ P, otherwise.

(2.1)

Ei
t is also the adjacency matrix of the subgraph Si at time t. The hypothesis testing problem

is illustrated in Fig. 2.1.

Figure 2.1: Graphs prior to the change-point in time τ follow the distribution P , and graphs
after time τ follow the distribution Q. We are particularly interested in detecting the local
change in a subgraph (showed in highlight).

Assuming that the change happens at τ , at each time t, for each subgraph Si, we form

a test statistic R(t, τ, Si). The change is detected when the test statistic exceeds a given

threshold γ. Let w be a small sliding window, the test scheme can be formulated as

T = inf{t : max
t−w<τ<t

max
Si∈S

R(t, τ, Si) > γ}. (2.2)

We are further interested in knowing which subgraph causes the change in the graph

structure. The test statistic R(t, τ, Si) is useful in localizing the change, as the subgraph S∗

that maximizes R(t, τ, Si) is the subgraph containing the change,

S∗ = arg max
Si∈S

R(t, τ, Si).

We present two possible approaches to this problem based on scan statistic in the next

5
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sections, a parametric approach and a non-parametric approach. Moreover, we will study

real data for this problem in the numerical example section.

2.2 Parametric Approach

First, we consider a parametric approach to form the scan statistic R(t, τ, Si) in (2.2) by

introducing a probability model to the sequence of graphs. In particular, we assume that the

entries of the adjacency matrices are Gaussian random variables. Before the change, the

edges have smaller means (e.g., zero mean) to represent that there is no significant correla-

tion between the sensors. After the change, a subset of the nodes, i.e. sensors containing the

change, will have higher means on the edges between them. For any subgraph Si ∈ S , at

time t, let Wu,v(t) denote the probability of the edge formation between the vertices u and

v, where u, v ∈ V i, then Ei
t = {Wu,v(t) : u, v ∈ V i}. In this case, in the hypothesis testing

problem (2.1), P represents N (µ0, σ
2
0), and Q represents N (µ1, σ

2
0), where µ0, µ1, σ

2
0 are

constants, and µ1 > µ0. We can re-write (2.1) as

H0 : Wu,v(t) ∼ N (µ0, σ
2
0), t = 1, . . . , N, ∀ u, v ∈ V ;

H1 : Wu,v(t) ∼ N (µ1, σ
2
0), t ≥ τ, µ1 > µ0, u, v ∈ S∗,

Wu,v(t) ∼ N (µ0, σ
2
0), otherwise.

In this section, we first set aside the time dimension and focus on detecting the subgraph

S∗ affected by the change. Once we formulate the subgraph detection scheme, we can

repeatedly apply the test to the sequence of graphs as a Shewhart chart procedure.

Now we present the construction of the scan statistic in the parametric setting. Let xi

denote the number of edges in a subgraph Si with m vertices. Then xi follows a Gaussian

distribution with mean µxi and covariance Σxi .

xi =
∑
u,v∈Si

Wu,v ∼ N (µi,Σi).

6
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Under the null hypothesis,

µi =
m(m− 1)

2
µ0, Σi =

m(m− 1)

2
σ2

0.

A change is detected when the maximum number of edges in a subgraph exceeds a

pre-specified threshold γ, i.e.

max
Si∈S

xi > γ.

We estimate the false alarm rate: P0{maxSi∈S xi > γ}. Recall |S| = d. So the false alarm

rate can also be written as

P0{ max
i=1,...,d

xi > γ}. (2.3)

2.2.1 Theoretical Threshold

We observe that (2.3) is the tail probability of the maximum of a series of correlated Gaus-

sian random variables. In this section, we transform the false alarm rate formula using

Bayes rule, and then apply the idea of selective inference [4] to estimate the probability.

Notice that we can decompose the event in (2.3) as the union of polyhedrons:

{
max
i=1,...,d

xi > γ

}
=

⋃
i=1,...,d

{xi > γ, xi ≥ xj, j 6= i}

,
⋃

i=1,...,d

{Aix ≥ b},

7
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where x = [x1, . . . , xd]
N ∈ Rd, b = [γ, 0, . . . , 0]N ∈ Rd, and Ai = APi. Here,

A =



1 0 0 · · · 0

1 −1 0 · · · 0

1 0 −1 · · · 0

... . . .

1 0 0 · · · −1


∈ Rd×d,

and Pi is the permutation matrix swapping the 1st and the ith entry of x. Similar decompo-

sition appears in [10]. Thus,

P0{ max
i=1,...,d

xi > γ} =
β

α
, (2.4)

where

α = P0{x1 > γ
∣∣ max
i=1,...,d

xi > γ}

= P0

{
x1 > γ

∣∣ ⋃
i=1,...,d

{−Aix ≤ −b}
}
,

β = P0{x1 > γ}

= 1− Φ

(
γ;
m(m− 1)

2
µ0,

m(m− 1)

2
σ2

0

)
,

where Φ is the CDF of the standard normal distribution, and α can be evaluated using

selective inference as Theorem 5.3 in [4]. Our result is summarized in Lemma 2.2.1.

Lemma 2.2.1. Let FB
µ,σ2 denote the CDF of a normal random variable with mean µ and

8
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variance σ2 truncated to the set B, and let x ∼ N(µ,Σ). Then

µ =
m(m− 1)

2
µ01d,

Σ(i,i) =
m(m− 1)

2
σ2

0,

Σ(i,i′) =
li,i′(li,i′ − 1)

2
σ2

0, i 6= i′,

where 1d is the d-dimensional vector of all 1’s, and li,i′ is the number of overlapping nodes

between two subgraphs Si and Si
′
. Then we have the following conclusion.

F
⋃

i[V
−
i (z),V+

i (z)]

ηNµ,ηNΣη
(ηNx)|

⋃
i=1,...,d

{−Aix ≤ −b} ∼ Unif(0, 1)

with the specification η = [1, 0, . . . , 0]N ∈ Rd, and the set boundaries

V−i (z) ≡ max
j:(Aic)j>0

bj − (Aiz)j
(Aic)j

,

V+
i (z) ≡ min

j:(Aic)j<0

bj − (Aiz)j
(Aic)j

,

where

c ≡ Ση(ηNΣη)−1 = ΣηΣ−1
1,1 = aΣ(:,1),

z ≡ (Id − cηN)x = x− cηNx = x− aΣ(:,1)x1,

a =
2

k(k − 1)σ2
0

.

9
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For i 6= i′,

Aic = APic = a

 Σ(i,1)

Σ(i,1) − Σ(i′,1)

 ,

Aiz = APiz =

 xi − aΣ(i,1)xi(
xi − aΣ(i,1)xi

)
−
(
xi′ − aΣ(i′,1)xi

)
 ,

b− Aiz =

 γ −
(
xi − aΣ(i,1)xi

)
(
xi′ − aΣ(i′,1)xi

)
−
(
xi − aΣ(i,1)xi

)
 .

Therefore, we can estimate the false alarm rate using Lemma 2.2.1 and (2.4) and set

the threshold γ accordingly. The performance of the estimation is presented in the next

section.

2.2.2 Numerical Verification

In this section, we conduct a numerical experiment to verify the numerical accuracy of

our estimation of the false alarm rate. Assuming standard normal distribution under the

null hypothesis, we generate α according to Lemma 2.2.1 and compute the false alarm rate

based on (2.4). The resulting false alarm rate curve by changing the threshold γ is plotted

in Fig. 2.2. The result is based on 500 experiments, and the standard error, which is small,

is shown as the shaded area in the plot.

We also compare the theoretically estimated γ from using formula (2.4) with the simu-

lated γ in Table 2.1. In this experiment, N = 50,m = 5, and d = 2, 118, 760. The two γ’s

are quite close in this case, showing good approximation of the theoretical result.

Table 2.1: Theoretically proven γ and simulated γ threshold values under different false-
alarm probabilities.

Probability Theory γ Simulated γ
0.2 13.34 14.43

0.15 14.77 14.68
0.1 16.00 15.93

10
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Figure 2.2: Theoretical false-alarm rates of the detection statistic by equation (2.4).

2.3 Non-parametric Approach based on Similarity

In this section, we describe a non-parametric detection statistic based on the similarity

measure between subgraphs at different time. The idea is to compare the subgraphs formed

with the same set of nodes occurring before and after time t to check for their graph struc-

ture similarity. If the graph structures are similar, they are likely from the same distri-

bution, and if if the dissimilarity is large enough, we declare a change-point at t. For

i = 1, . . . , d, at time t = 1, . . . , N , we check the similarity between Si(1), . . . , Si(t − 1)

and Si(t), . . . , Si(N). For simplicity, denote an arbitrary subgraph Si as S in the rest of

the analysis.

H0 is rejected when R(t, τ, S) is significantly smaller than its expectation under the

permutation null distribution. When R(t, τ, S) is small, it means that the number of edges

connecting the two groups in the k-NN graph is small, and the two samples are likely from

different distributions. If R(t, τ, S) is large, it implies that the samples are well-mixed and

are likely to be from the same distribution.

11
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It is shown in [11] and [12] that the standardized test statistic

R(t, τ, S)− E[R(t, τ, S)]√
V ar(R(t, τ, S)

converges to the standard normal distribution under H0 when t
N−t → λ ∈ (0,∞) for

multivariate data. The mean and variance for the statistics are

E[R(t, τ, S)] =
4kt(N − t)
N − 1

,

V ar(R(t, τ, S)) =
4kt(N − t)
N − 1

(
h
(
t, (N − t)

)
( 1

N

N∑
n,n′=1

A+
n,n′A

+
n′,n + k − 2k2

N − 1

)
+
(
1− h(t, N − t)

)
+
( 1

N

N∑
n,n′,n′′=1

A+
n′,nA

+
n′′,n − k

2
))
,

where h(t, N − t) = 4(t−1)(N−t−1)
(N−2)(N−3)

.

Define the test statistic

R′(t, τ, S) = −R(t, τ, S)− E[R(t, τ, S)]√
V ar(R(t, τ, S)

.

Suppose the change occurs at time τ , thenR′(t, τ, S) will be large when t is close to τ (note

the negative sign in the standardization).

The testing procedure can be written as

T (t, τ, S) = inf{t : max
Si∈S

max
n0≤t≤N−n0

R′(t, τ, Si) > γ}, (2.5)

where 1 < n0 < N .

12
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2.4 Real-data Example

In this section, we demonstrate how the proposed detection statistics could be used in solv-

ing the local change-point detection problem in a seismic sensor networks using real data.

We first check whether there is a change in the graphs, and then narrow down the change

to a subgraph. For simplicity, we only apply the nonparametric approach.

2.4.1 The Seismic Data

The seismic sensor network that we study is illustrated in Fig. 2.3. It shows the physical

location of the sensors measuring signals around the Old Faithful Geyser in the Yellowstone

National Park. There are 18 sensors in the network, and edge information is contained in the

pair-wise cross-correlation function between the sensors. The cross-correlation function is

then transformed to a value called peak lag time, which is shown on the y-axis in Fig.

2.3. We observe a sequence of 101 graphs on this network over time, one at each “stage”,

ranging from stage−50 to 50 (shown as the x-axis). The nodes, or sensors, in the networks

remain the same, while the edge value fluctuates as the peak lag time among the sensors

changes. At stage 0, the geyser erupts, and the distribution of the peak lag time among the

sensors affected by the eruption changes. Our goal is to detect the change in the sequence

of the graphs at stage 0 and find the sensors responsible for the change. We have data on 11

stations: 001, 002, 003, 005, 006, 008, 009, 010, 014, 015, 016, and the peak lag time on

10 pairs of the stations. For the other 45 pairs without data, we assume that no edge forms

between the sensors.

2.4.2 Change-point Detection

First we detect whether there is a change-point in the sequence of graphs. Two types of

graphs are considered, the unweighted graph and the weighted graph.

13
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2.4.2 Unweighted Graph

Denote the mean peak lag time (red points in Fig. 2.3) of a pair of sensors u, v at time t

as yu,v(t). Assume that an edge forms between u, v at time t if yu,v(t) is greater than the

average ȳu,v, that is, yu,v(t) > ȳu,v, where ȳu,v = 1
101

∑101
t=1 yu,v(t). We use the Weisfeiler-

Lehman edge graph kernel [13] to measure the closeness of the graphs and find the k-NN

as described in the non-parametric section. The test statistic −R(t, τ, S) is plotted in Fig.

2.4, and it peaks at stage 0, corresponding to the true change-point.

2.4.2 Weighted Graph

To construct weighted graphs, at each time t, we use the peak lag time between the two

stations u, v as the “weight” on the edge between the nodes.

The test statistic −R(t, τ, S) is plotted in Fig. 2.4. Comparing with the previous ex-

periment on unweighted graphs, we find that although both methods successfully identifies

the change-point at stage 0, there are also two other local maxima for the weighted graph,

which may interfere with the detection.

2.4.3 Change Location Detection

We are further interested in finding the location within the graph where the change happens.

In other words, we identify a subset of m nodes that contribute to the overall change in the

graphs. Ideally, the data on those nodes would be sufficient for the overall change detection.

In this example, we assume m = 3 by observing Fig. 2.3. We have data for 11 nodes, and

therefore
(

11
3

)
= 165 possible subsets of nodes. However, recall that only 10 edges are

available. So in reality, only 56 subsets are considered. Given each subset of nodes, we

preserve the edge information among the 3 nodes, and set the weight on other edges to 0.

For each subset, we repeat the steps in the last example on weighted graphs as if the graphs

only contain 3 nodes in the subset. Following the testing procedure in (2.5), we find that

the subgraph maximizing the test statistic is formed by nodes 001, 008, and 009.
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Figure 2.4: Test statistic for: Unweighted graph (top), weighted graph (bottom).
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CHAPTER 3

PEDIATRIC KIDNEY TRANSPLANT SURVIVAL ANALYSIS USING

STATISTICAL MACHINE LEARNING

3.1 Introduction

One of the greatest challenges of organ transplantation in the U.S. is the widening gap

between the supply and demand for organs. On any given day, around 75,000 patients are

on the waiting list for organs, but each year, only 34,000 organs are recovered [14]. The

question of how to allocate the limited organs becomes critical and challenging. When

matching an available organ to a potential recipient, the recipient’s post-transplant survival

estimate is one of the major considerations. In this paper, we analyze historical records

of pediatric kidney transplantation in the U.S. to develop a statistical machine learning

model that can (1) accurately predict the post-transplant survival curves for pediatric kidney

transplant recipients and (2) identify the most important risk factors influencing the survival

curves.

We focus on pediatric (age 0-17) kidney transplant recipients since most post-transplant

survival prediction models are developed for adult kidney transplant recipients and do not

always perform well on pediatric recipients. Pediatric and adult kidney transplant recipi-

ents have distinct physiological conditions, and their survival curves are different (Figure

3.1). Our survival prediction model for pediatric kidney transplant recipients shows better

performance than a recent state-of-art model developed for transplant recipients of all ages

[16].

To the best of our knowledge, there is no post-transplant survival prediction model

for pediatric transplant recipients. Most existing studies on pediatric transplantation are

retrospective and review the overall trends in the post-transplant survival probabilities for

17
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Figure 3.1: The Kaplan-Meier survival curves [15] for pediatric (age 0-17) and adult (age
18 and above) recipients of kidney transplantation are different.

the pediatric transplant recipients [17, 18, 19, 20, 21, 22, 23]. For example, it is shown that

the survival probabilities for pediatric kidney transplant recipients improved from 1989 to

2014 [23]. To complement the existing literature, we develop a model to estimate the post-

transplant survival curves for a specific recipient and donor pair. Similar models have been

developed for transplant recipients of all ages [16] and for pediatric recipients of “increased

risk” organs [24], but a model dedicated to the pediatric recipients of a general kidney, to

be best of our knowledge, is unavailable yet.

In comparison to existing studies on pediatric transplantation, we adopt a systematic

statistical variable selection method to identify the most significant risk factors influenc-

ing the pediatric post-transplant survival curves. In many existing studies, medical domain

knowledge is used to select the risk factors [25, 26, 27, 28, 29]. There are also studies

which evaluate the effect of a specific risk factor on the pediatric post-transplant survival

rates, including but are not limited to donor age [30], HLA-DR match [31], polyomavirus
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nephropathy [32], and the obesity status of the transplant recipient [33]. In this paper, we

combine systematic statistical variable selection techniques with medical domain knowl-

edge to identify the most critical risk factors influencing the post-transplant survival curves

for pediatric kidney transplant recipients.

While the current study focuses on kidney transplantation since kidney is one of the

most commonly transplanted organs in the U.S., the methodology we develop is general

and is applicable to other organs as well.

3.2 Methods

In this section, we describe the data, the data preparation process, and the survival analysis

and variable selection methods used to build our survival prediction models for pediatric

recipients of kidney transplantation.

In developing the methodology, we divide our data by donor type (deceased or living)

and pre-process the data by removing transplant cases with heterogeneous survival distribu-

tion, imputing missing values, and feature engineering the variables. We then experiment

with the classical Cox proportional hazard model [34] and the machine learning based ran-

dom survival forest (RSF) model [35] and choose the one with higher prediction accuracy

for each donor type.

3.2.1 The Pediatric Kidney Transplant Data

We use a dataset from UNOS (United Network for Organ Sharing), which contains 19,236

pediatric (age 0 - 17) kidney transplant cases in the U.S. from 1987 to 2014. For each

transplant case, 487 features concerning the transplant recipient, the donor, and the pro-

cedure were recorded. One of the greatest challenges of survival prediction for pediatric

kidney transplant recipients is the high censoring rate in pediatric datasets. In the UNOS

dataset, 94.30% of the pediatric data are censored, compared with 79.17% for the general

transplant data. Censoring means that when the data are collected, the event (in this case,
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death of the transplant recipient) does not happen during the observation time frame, and

only the person’s latest follow-up time is recorded. In statistics, when calculating the sur-

vival rate, the censored people are considered as not experiencing the event. Hence, the

empirical survival rates of pediatric kidney transplant recipients are much higher than adult

recipients (see Figure 3.1). With a limited number of death cases in the pediatric data, it

is challenging to characterize the features of pediatric transplant cases with a high risk.

It is equivalent to the unbalanced data issue in a machine learning classification problem.

Therefore, it is more difficult to develop an accurate survival prediction model for pediatric

kidney transplant recipients than for the general recipients. Nevertheless, our proposed

model still achieves higher prediction accuracy than the existing models.

3.2.2 Data Preparation

We pre-process the UNOS dataset for the survival model by following three steps: (1)

divide the dataset into two by donor type, and for each donor type, (2) apply a change-

point detection method to ensure data homogeneity, and (3) conduct feature engineering

and missing value imputation.

Divide the dataset into two by donor type, i.e. deceased or living

We study the two donor types separately and build a unique survival prediction model for

each donor type for two reasons. Firstly, past studies [26, 36] found that the donor type

is an impactful feature for the survival rates of transplant recipients. Receiving the organ

from a living donor generally results in higher survival rates than from a deceased donor.

To ensure that the prior finding holds in our pediatric kidney dataset, we use the log-rank

test[37] to compare the 5-year survival curves for recipients of each donor type. The log-

rank test is a statistical test used to compare the survival distributions of two samples. When

the test gives a p-value lower than a significance level, often set to be 0.05, it indicates a

significant difference between the two samples. The resulting p-value is 2.0×10−15, which
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confirms a significant difference between the post-transplant survival curves for pediatric

kidney recipients of the two donor types.

Figure 3.2: The post-transplant survival curves by the donor type are different, and we need
a separate survival prediction model for each donor type.

Secondly, dividing the data by donor type and building a designated survival model

for each donor type allow us to include donor type specific variables in the survival mod-

els. It also avoids imputing variable entries that are not missing but not applicable due

to the donor type. For example, the transplant cases with deceased donors contain a vari-

able called DON MECH DEATH (donor mechanism of death), which does not apply to

the living donors. Similarly, transplant cases with living donors contain a variable called

LIV DON TY (living donor type), which describes the living donor’s relation to the recip-

ient. The transplant cases with deceased donors also have this feature, but the entries are

left blank.

After dividing the dataset by donor type, we have 9,927 transplant cases for the de-

21



www.manaraa.com

ceased donors, and 8,852 cases for the living donors. For each donor type, we conduct

further data processing steps, which include using change-point detection to tackle data

heterogeneity, conducting feature engineering, and imputing missing values.

3.3 Change-point Detection to tackle Data Heterogeneity

A significant feature of our dataset is heterogeneity due to the wide range of time (from

1987 to 2014) the data were collected and the distinct physiological complexities of trans-

plant recipients and donors at different life stages (see Figure A.2 and Figure A.4). To

ensure that we fit a survival model using “homogeneous” data, i.e. data with similar sta-

tistical property, we perform change-point detection to partition the data. In particular, we

use the machine-learning-based decision tree [38] and the statistical log-rank test [37] for

detecting change-points in the transplant year, the recipient age, and the donor age. The

decision tree partitions the data into groups with similar survival time by finding the opti-

mal splits in the range of the variables (i.e. transplant year, recipient age, and donor age).

The data are split iteratively and organized in a tree structure until the data in each terminal

tree node have similar survival time. We use the first three split values as change-points.

To use the log-rank test for change-point detection, we scan through values in the range of

the variables (i.e. transplant year, recipient age, and donor age) and apply the log-rank test

repeatedly. The change-points found by the log-rank test are values at which the test result

has a p-value lower than the significance level. In cases where the log-rank test generates

significantly low p-values for a sequence of split values (as in Figure 3.4), we focus on the

first and last split values in the sequence. If the terminal split value in the sequence has a

neighbor whose p-value is higher than the significance level, it represents a change in the

pattern of the test results, and we declare the terminal split value as a change-point.

Using the change-point detection methods, we find multiple change-points in the trans-

plant year, the recipient age, and the donor age that impact the survival curves of the pe-

diatric recipients of kidney transplantation. The change-points are summarized in Table
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3.1. Figure 3.4 shows plots of the p-values from the log-rank tests, and Table 3.2 shows

the specific p-values in Figure 3.4. Multiple change-points are detected by the decision tree

and the log-rank test (Table 3.1). We choose the change-points by which the majority of the

data are maintained after partitioning (see Figure 3.3), and round the change-points to the

nearest integers in accordance with the conventions in the datasets. As a result, for the de-

ceased donor dataset, we keep transplant cases with the transplant year between 1991 and

2010, recipient age between 2 and 17, and donor age between 17 and 35 (all inclusive). For

the living donor dataset, we keep transplant cases with the transplant year between 2003

and 2008, recipient age between 11 and 17, and donor age between 23 and 45 (all inclu-

sive). We assume the data for each donor type now follow the same survival distribution

and can be characterized by a single survival prediction model. The data would also be

randomly sampled for training and testing purposes in the model evaluation and variable

selection process.

For the dataset of each donor type, we remove variables with more than 80% missing

entries to ensure that the variables we consider are commonly recorded in practice. We also

remove the categories of categorical variables that have fewer than 10 samples as there are

insufficient data to model the impact of these categories on the survival outcome.

Missing values in the datasets are imputed using the kNNHDI algorithm [39]. The al-

gorithm finds the closest resemblance to a transplant case with missing variable entries and

imputes the missing values using its k Nearest Neighbors (kNN). The kNNHDI algorithm

has the advantage of not assuming variable independence. Algorithms such as MICE [40]

impute a variable with missing entries by regressing the variable on the other variables and

assume independence among the regressors. In our dataset, however, the assumption of

variable independence does not hold. We tune the parameters (the weight and the number

of nearest neighbors) in the kNNHDI algorithm to minimize the validation error.

After data pre-processing, we have 3919 pediatric kidney transplant cases and 84 fea-

tures in the deceased donor dataset, and 5444 pediatric kidney transplant cases and 40
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Table 3.2: Specific p-values around the borderline of the 0.05 significance level in the log-
rank test in Figure 3.4. Bolded are the split points where the corresponding p-values are
at or lower than the 0.05 significant level, and their p-values. The bold split values are the
change-points determined by the sequential log-rank test.

Donor type Variable Split value p-value
Recipient age 8 0.036

9 0.050
17 0.043
33 0.054
34 0.060
35 0.045

Deceased donors Donor age 36 0.047
40 0.051
41 0.040
42 0.043
52 0.059
53 0.054
54 0.045

Recipient age 2 0.045
Living donors 4 0.053

Donor age 22 0.038
60 0.039
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features in the living donor dataset. The specific features for the deceased and the living

donors are in Table ?? and Table ?? in the Appendix respectively.

3.4 Survival Prediction and Variable Selection

We consider two types of survival prediction models for predicting the post-transplant sur-

vival curves for the pediatric kidney transplant recipients, and we select the one with better

performance for each donor type. The two models are the statistical Cox proportional

hazard model [34] and the machine learning based random survival forest (RSF) model

[35]. The Cox model and its variants have been widely used in existing studies as a classi-

cal approach to solve survival prediction problems, while the RSF model is more recently

developed and is not yet extensively used in practice. For each donor type (deceased or

living), we compare the performance of the two models by their out-of-sample prediction

accuracy metrics and select the model with better performance.

Specifically, in the RSF model, we use 1000 trees and restrict the average terminal node

size to be 3 to balance the model performance and the computation speed.

We combine statistical methods and medical knowledge to select important features,

or risk factors, in the Cox model and the RSF model. For each survival prediction model,

we first use a statistical variable selection (also called feature selection or model selec-

tion) method suitable for the model to identify the most important risk factors. Hence, the

variables selected in the Cox model and the RSF model are not necessarily identical. The

variable selection procedure is performed using 5-fold cross-validation. For the dataset of

each donor type, we randomly partition the data into five-folds, train the model on four

folds of the data, and evaluate the model performance on the remaining one fold. The pro-

cess is repeated until each fold of the data is being tested on once. The process ensures that

the training and the testing data are 80% and 20% of the entire dataset in every training

and testing run. The partition is valid based on the assumption that the data are from a ho-

mogenous survival distribution, which is ensured by the data pre-processing change-point
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detection step. We then use medical knowledge to determine the relevancy of the selected

variables to our problem and finalize the features we include in the models.

In the Cox model, we use the group lasso penalty [41], since the majority of the vari-

ables (70% in the deceased donor dataset and 75% in the living donor dataset) are categor-

ical. The group lasso penalty allows selecting all categories of a categorical variable at a

time, while most other widely used variable selection methods, such as the regular lasso

and elastic net, select certain categories of the categorical variables. In addition, methods

such as stepwise variable selection are not efficient, given the large number of variables

in the dataset. By adjusting the hyper-parameter in the penalty term, we determine the

variables maximizing the out-of-sample c-index in each cross-validation trial. We take the

union of the variables selected in each trial and use their medical interpretations to decide

whether to include the variable in the final Cox model. We evaluate the performance of

the proposed final Cox model by randomly sampling 80% of the data as training data and

20% of the data as testing data and calculating the average performance metrics of 10 such

repetitions.

The variables in the RSF model are selected using the variable permutation importance

(VIMP) score [35], which measures the contribution of a variable to the RSF model’s out-

of-sample prediction accuracy. We compute the VIMP score for every variable in each

cross-validation trial, then rank the variables by their mean VIMP score of all trials (see

Figure * for the deceased donors and Figure ?? for the living donors). We determine the

number of variables to include in the final RSF model by experimenting with a different

number of variables and checking the corresponding model performance. We start with

the most important variable (the one with the highest VIMP score) and add variables one

at a time in the order of their average VIMP score into the model until the model’s cross-

validated out-of-sample c-index start to decrease.

To evaluate the performance of our survival prediction models, we compare their perfor-

mance with two other models from the literature. The first model is the EPTS (Estimated
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Post Transplant Survival) model, which is the in-use model for determining the priority

of adult transplant recipients on the kidney transplant waiting list. The model uses four

features (recipient age, recipient diabetes status, recipient previous transplant yes/no, and

recipient number of years on dialysis) as well as the transformation and interaction of these

features to predict the post-transplant survival probabilities for adult kidney transplant re-

cipients. An equivalence for the pediatric kidney transplant recipients is not established in

practice, and pediatric recipients have a higher priority than adult recipients on the waiting

list. The second model used for comparison is a recently developed state-of-art survival

prediction model for kidney transplant recipients of all ages based on gradient-boosted

trees [16].

We use two metrics for evaluating the performance of the survival prediction models:

Harrell’s concordance index [42] (c-index, or concordance index) and the 5-year integrated

Brier score [43]. The two metrics are standard metrics commonly used in survival analysis.

The c-index measures the concordance between the predicted and the observed survival

time for all pairs of transplant recipients. It has a similar interpretation to the AUC (Area

Under Curve) [44]: a value of 0.5 means randomly guessing which one of the pairs of

the recipient has longer survival time, and a value of 1 means perfect prediction. Unlike

the AUC, the c-index is considered satisfactory if between 0.6 and 0.7 [45]. The c-index is

useful for comparing the survival time for recipients when an organ becomes available. The

integrated Brier score is the squared error of probabilistic predictions integrated throughout

the prediction horizon.

3.5 Results

The performance of our model and other models from the literature is summarized in Table

3.3 for the deceased donors and Table 3.6 for the living donors. The other models are

the EPTS (Estimated Post Transplant Survival) model [46] (the in-use model for ranking

the adult kidney transplant recipients on the waiting list) and a gradient-boosted tree model
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developed for kidney transplant recipients of all ages [16]. For both donor types, our model

has improved out-of-sample concordance index and similar 5-year integrated Brier scores

compared to the other models.

The features selected by each survival prediction model to be influential for the post-

transplant survival results are shown in Table 3.5 for the deceased donors and Table 3.8

for the living donors. In the tables, we highlight in bold features that are, according to

our models, particularly important for pediatric kidney transplant recipients and not for

recipients of other age groups.

The Cox survival prediction model further identifies statistically significant features

(with a p-value at or less than 0.05), which we include in Table 3.4 for the deceased donors

and Table 3.7 for the living donors. The coefficients fitted by the Cox model are used

to compute the hazard ratio of the feature, with a hazard ratio greater than 1 indicating a

higher post-transplant risk as the feature value increases, if the feature is numeric. If the

feature is categorical, a hazard ratio larger than 1 means that a pediatric kidney transplant

recipient who falls under the feature category is predicted to have higher post-transplant

risk than those under the feature’s baseline category.

and the interpretation of selected variable coefficients in our Cox model are shown in

Table 3.4. We find that in comparison with the EPTS and the general population model, the

recipient current Panel Reactive Antibodies (PRA) level, recipient gender, donor age, donor

ethnicity, transplant year, and recipient previous malignancy are specifically influencing

the post-transplant survival curves for the pediatric kidney recipients. We observe that,

contrary to intuition, insurance type (private vs. public) is not a significant risk factor

for the post-transplant survival curves in either our Cox model or the RSF model for the

pediatric kidney transplant recipients.

The Harrell’s concordance index shows that both the Cox model and the RSF model we

develop have a mean improvement of 0.09 from the EPTS model and 0.02 from the general

population model. The average 3 year integrated Brier score for the models are on the same
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Table 3.3: Deceased donor model performance comparison. The metrics reported are from
5 fold cross validation.

Performance measure Proposed Cox Proposed RSF EPTS model (in-use) All-age RSF[16]
c-index 0.57 0.57 0.51 0.53

5 year Brier score 0.036 0.036 0.036 0.036

Table 3.4: Deceased donor proposed Cox model significant (p ≤ 0.05) variable interpreta-
tion.

Variable: category Baseline category Hazard ratio p-value
AGE DON (donor age) n/a 0.993 0.0913
CURRENT PRA (PRA level) n/a 1.0084 0.000101
DIAB (diabetes status): unknown negative 1.729 0.00556
ETHCAT (ethnicity): hispanic white 0.639 0.00300
GENDER (gender): male female 0.823 0.0525
MECH DEATH DON (donor
mechanism of death):
cardiovascular and others

asphyxiation and anoxia 4.151 0.00724

YRS DIAL (years on dialysis) n/a 0.965 0.00257

level.

3.6 Discussion

We developed a survival prediction model for pediatric kidney transplant recipients. We

showed that the donor type has a significant impact on the survival of the pediatric trans-

plant recipients and developed separate survival prediction model for each donor type. Our

proposed model is built using variables specifically selected for the pediatric kidney trans-

plant recipients, and it has higher prediction accuracy than models based on the general

kidney transplant recipients.

For further research, a possible direction is to incorporate the variable correlations in

the survival model. In the dataset, variables such as the recipient’s Body Mass Index (BMI),

age, and time on dialysis can be highly correlated. Another example is the paired features

of the donor and the recipient, such as the donor age and the recipient age. Incorporat-

ing variable interaction terms and consider variable correlations may improve the survival

prediction model.
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Table 3.6: Living donor model performance comparison. The metrics reported are from
5-fold cross validation.

Performance measure Proposed Cox Proposed RSF EPTS model (in-use) All-age RSF[16]
c-index 0.57 0.54 0.48 0.49

5 year Brier score 0.018 0.018 0.018 0.018

Table 3.7: Living donor proposed Cox model significant (p≤ 0.05) variable interpretation.

Variable: category Baseline category Hazard ratio p-value
DIAG KI: tubular and interstitial
diseases

glomerular disease 2.399 3.63e-06

DIAG KI: polycystic kidneys glomerular disease 1.741 0.0924
HCV DON: unknown not infected 0.663 0.0591
HCV SEROSTATUS: unknown negative 2.330 0.0240

Our survival prediction model can serve as a powerful tool for making decisions in

the organ allocation network. For the recipients and the physicians, the model provides a

customized survival prediction curve that shows the expected survival probability over time

if the patient accepts an offered organ. The model is also useful for prioritizing patients on

the waiting list for organs.

At the meantime, we have received a new dataset with more recent transplant cases.

The new dataset is a great opportunity to test whether the methodologies adopted in this

chapter would easily transfer to another dataset. It is also useful for studying the evolution

of transplant survival over time. The study of predicting the survival curves for pediatric

kidney transplant recipients continues and the results would soon appear in another paper.
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CHAPTER 4

GRAPH BASED VARIABLE SELECTION FOR SURVIVAL ANALYSIS

4.1 Introduction

Variable selection is a fundamental problem in survival analysis. When developing an

accurate survival predicting model, identifying the proper variables to include in the model

is often essential. In many applications, there exists an underlying graphical structure for

the predictors. For example, some predictors may have strong correlations or interactions.

When predicting the survival probability of a transplant recipient, it is important to consider

the compatibility of the recipient and the organ donor. In such cases, incorporating the

graph structure into the penalty function for variable selection would allow more accurate

inference.

In this study, we adopt the classical Cox proportional hazard model [34] as the baseline

model for survival prediction. The goal is to obtain an accurate and consistent estimate

of the unknown parameters, the coefficients of the predicting variables. Most current vari-

able selection methods for the Cox proportional hazard model use the penalized likelihood

function as the objective function. The most frequently used penalties include the classical

lasso [47, 41], the ridge regression [48], the elastic net [49, 50], the smoothly clipped ab-

solute deviation (SCAD) penalty [51, 52], the adaptive lasso [53, 54], the fused lasso [55,

56], and the minimax concave penalty [57]. In survival applications involving categorical

variables, the group lasso penalty [58] is also often used.

We study a fused lasso type of penalty constraint to the Cox proportional hazard model

and provide its performance guarantees. This, to the best of our knowledge, is a new addi-

tion to the study of variable selection in survival analysis. Following [59], a graph-based

penalty function is applied to the Cox proportional hazard model. Graph based regression
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problems have been studied in [59], [60], [55].

We would like to mention that although the formulation and results in this paper is

motivated by healthcare applications associated with organ transplantation, the proposed

method can be useful in many different settings. For example, in social networks and

seismology applications, the underlying graph structure between users and seismic sensors

can also be utilized to design the penalty term for model regularization.

First we formulate the survival analysis model and the graph-based penalty function

in Section 4.1. Next we generalize the method introduced by [59] to the survival analysis

likelihood function. Theoretical analysis of the accuracy and consistency are provided in

Section 4.2. In Section 4.3 we compare different regularization methods using simulation.

In Section 4.4 we apply the proposed method to a real data example and illustrate the

benefit. In Section 4.5 we make the conclusion. All proofs are delegated to the Appendix.

4.2 Proportional Hazards Model and Penalty

4.2.1 Problem Formulation

Denote T as the survival time, and T is a random variable with cumulative distribution

function F (t) = P(T ≤ t), and density function f(t) = F ′(t) = d
dt
F (t). Define the

survival function as the upper tail probability S(t) = P(T > t) = 1− F (t), and similarly,

the survival event density function is s(t) = S ′(t) = −f(t). The hazard function is

h(t) =
f(t)

S(t)
= −S

′(t)

S(t)
.

Denote cumulative hazard function as H(t) =
∫ t

0
h(u)du, then we have

S(t) = exp(−H(t)).

Assume the usual survival data in the form (y1, δ1,x1), . . . , (yn, δn,xn), where yi is the
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time until an event of interest, δi = 1 indicates a complete observation and δi = 0 a right-

censored observation, and xi = {xi1, . . . , xip}T is the vector of predictorsc (covariates) for

subject i. For simplicity, assume that there are no tied event times. Given {(yi, δi,xi)}ni=1,

the likelihood function is

L =
∏
i:δi=1

f(yi|xi)
∏
i:δi=0

S(yi|xi) =
∏
i:δi=1

h(yi|xi)
n∏
i=1

S(yi|xi).

Throughout this study, we assume the Cox proportional hazard model [34], in which

the hazard function at time t given xi takes the form

h(t|xi) = h0(t) exp(βTxi),

where h0 is the baseline hazard function, and β = {β1, . . . , βp}T is the vector of parameters

to be estimated. Let H0(t) =
∫ t

0
h0(u)du, then H(t|xi) = H0(t) exp(βTxi) and we have

S(yi|xi) = exp(−H(yi|xi)) = exp(−H0(yi) exp(βTxi)).

The full log-likelihood function is

l(β) =
∑
i:δi=1

[log h0(yi) + βTxi]−
n∑
i=1

H0(yi) exp(βTxi). (4.1)

Our goal is to infer the unknown parameters β given censored observations.

4.2.2 Partial Likelihood Function

The baseline hazard function h0(·) is usually unknown and has not been parameterized.

Therefore, we adopt the commonly used partial likelihood function [61] instead of the full

log-likelihood shown in (4.1). To derive the partial likelihood function, we note that the

probability of the event being observed for subject i at time yi is the partial likelihood
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function

Li(β) =
h(yi|xi)∑

j:yj≥yi h(yi|xj)
=

exp(βTxi)∑
j:yj≥yi exp(βTxj)

.

Assuming independence of the observations, the joint partial likelihood function becomes

L(β) =
∏
i:δi=1

Li(β) =
∏
i:δi=1

exp(βTxi)∑
j:yj≥yi exp(βTxj)

,

and the log likelihood is

l(β) =
n∑
i=1

δi

{
βTxi − log

( ∑
j:yj≥yi

exp(βTxj)
)}
. (4.2)

[52] also gives another interpretation of (4.2) as substituting the “least informative” non-

parametric prior for H0(·).

We will use the formulation (4.2) in the rest of this section.

4.2.3 Classical Lasso Based Penalties

The classical lasso based method for the Cox model solves the penalized optimization

problem

min
β
− 1

n
l(β) + g(β), (4.3)

where g(β) is some penalty term. For classical lasso [41], g(β) = λ‖β‖1. For SCAD

penalty [52], g(β) =
∑p

j=1 fλ(|βj|), where f ′λ(θ) = I(θ ≤ λ) + (aλ−θ)+
(a−1)λ

I(θ > λ), a >

2, θ > 0. For elastic net [50], g(β) = γ
2

∑p
j=1 β

2
j + λ

∑p
j=1 |βj|. For fused lasso [56],

g(β) = λ1

∑p
j=1 |βj|+λ2

∑p−1
j=1 |βj+1−βj|. For adaptive lasso [54], g(β) = λ

∑p
j=1 τj|βj|

with positive weights τj . For group lasso [58], g(β) = λ
∑p

k=1 ‖βIk‖2, where Ik is the set

of variables belonging to the kth group.
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4.2.4 The Graph-based Penalty

We introduce a new penalty to the Cox model based on the predictor graph in order to

select correlated variables in the model. Let X = (x1, . . . ,xn)T = (X1, . . . , Xp) ∈ Rn×p.

Assume a known inverse covariance structure among X1, . . . , Xp. For simplicity, we can

construct an undirected and unweighted graph G that captures the correlations among the

predictors. Let E be the adjacency matrix of the graph, where Ei,i′ = 1 if there is an

edge between Xi and Xi′ , and 0 otherwise (1 ≤ i, i′ ≤ p). Let Ni be the set of indices

of the neighboring predictors of Xi, i.e. Ni = {k′ : Ei,i′ = 1}, and let di = |Ni|. By

incorporating the additional information on X , (4.3) can be rewritten as

min
β,V (1),...,V (p)

− 1

n

n∑
i=1

δi

{
βTxi − log

( ∑
j:yj≥yi

exp(βTxj)
)}

+ λ

p∑
k=1

τk‖V (k)‖2, (4.4)

s.t.
p∑

k=1

V (k) = β,

supp(V (k)) ⊂ Nk,

where τk is a positive weight for the kth group.

We can further define a new norm of β as

‖β‖G,τ = min∑p
i=1 V

(i)=β, supp(V (i))⊆Ni

p∑
i=1

τi‖V (i)‖2. (4.5)

It can be verified that ‖ · ‖G,τ satisfies the triangle inequality and is indeed a norm [62].

Using this norm, the formulation (4.4) is equivalent to

min
β∈Rp
− 1

n

n∑
i=1

δi

{
βTxi − log

( ∑
j:yj≥yi

exp(βTxj)
)}

+ λ‖β‖G,τ .
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4.3 Computation

In this section, we show how the optimization problem (4.4) could be transformed to re-

move the constraint terms. The technique is developed based on the predictor duplication

method in [59].

Let xiNk
be the |Nk|×1 subvector of xi, whose indices are inNk. Let V (k)

Nk
be the |Nk|×

1 subvector of V (k). Then
∑n

i=1 β
Txi =

∑n
i=1

∑p
k=1 V

(k)
Nk

T
xiNk

, and the log likelihood

function can be rewritten as

l(β) =
n∑
i=1

δi

{
V

(i)
Ni

T
xNi
− log

( ∑
j:yj≥yi

exp(V
(j)
Nj

T
xNj

)
)}
. (4.6)

Therefore, the optimization problem can be solved using existing solvers for the group

lasso penalty, such as the R grpreg package.

After obtaining the coefficients V̂ (i)
Ni

, let V̂ (i)
N c

i
= 0. Then β =

∑p
i=1 V̂

(i)
Ni

.

4.4 Theoretical Properties

4.4.1 Assumptions

Denote β0 = {β01, . . . , β0p} as the true parameters, J0 = {i : β0i 6= 0} is the index of non-

zeros parameters, J c0 = {i : β0i = 0} is the index of zero parameters, and s0 = |J0| denotes

the number of non-zero parameters. Let U(β) denote the set of all optimal decompositions

of β that minimizes ‖β‖G,τ . In other words, U(β) consists of all optimal solutions to the

problem (4.5). Denote KG,τ (β) as

KG,τ (β) = min
(V (1),V (2),...,V (p))∈U(β)

|{i : ‖V (i)‖2 6= 0}|,
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and KG,τ as the supreme of KG,τ (β) over all β satisfying supp(β) ⊆ J0,

KG,τ = sup
supp(β)⊆J0

KG,τ (β).

We note that KG,τ = s0 is the graph G has no edge; and KG,τ = K0 if G consists of some

disconnected complete subgraphs and J0 is the union ofK0 node sets of those disconnected

subgraphs.

Assumption 4.4.1 (Assumptions for the likelihood [52]). We have the following assump-

tions for the partial likelihood function:

1.
∫ 1

0
h0(t)dt <∞.

2. The processes x(t) and Y (t) are left-continuous with right hand limits, and

P{Y (t) = 1,∀t ∈ [0, 1]} > 0.

3. There exists a neighborhood B of β0 such that

E sup
t∈[0,1], β∈B

Y (t)x(t)Tx(t) exp(βTx(t)) <∞

4. Define

s(0)(β, t) = EY (t) exp(βTx(t))

s(1)(β, t) = EY (t)x(t) exp(βTx(t))

s(2)(β, t) = EY (t)x(t)x(t)T exp(βTx(t))

where s(0)(·, t), s(2)(·, t), s(2)(·, t) are continuous in β ∈ B, uniformly in t ∈ [0, 1].

s(0), s(1), s(2) are bounded on B× [0, 1]; s(1) is bounded away from zero on B× [0, 1].
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The matrix

I(β0) =

∫ 1

0

v(β0, t)s
(0)(β0, t)h0(t)dt

is finite positive definite, where

v(β, t) =
s(2)(β, t)

s(0)(β, t)
−
(
s(1)(β, t)

s(0)(β, t)

)(
s(1)(β, t)

s(0)(β, t)

)T
.

The reason of imposing the above four assumptions is to obtain the local asymptotic

quadratic property for the partial likelihood function `(β), as well as the asymptotic nor-

mality of the maximum partial likelihood estimates [63, 64].

Assumption 4.4.2 (Assumptions for the predicted graph G). The following assumptions

are required for the predicted graph G.

1. The neighboorhood Ni ⊆ J0, ∀i ∈ J0.

2. There exists κ > 0 such that

inf
β∈Rp\{0}

inf
(V (1),V (2),...,V (p))∈U(β)

1
2
(
∑p

i=1 V
(i))T I(β0)(

∑p
i=1 V

(i))∑
j τ

2
j ‖V (j)‖2

2

≥ κ.

Remark 1. The Assumption 4.4.2 (1) assumes that the predicted graphG is consistent with

the true parameter β0, the same as the assumption A2 in [59]. The Assumption 4.4.2 (2)

is a restriction on the smallest eigenvalue of the Fisher information at true parameter β0.

Compared with the assumption A3 for the data matrix X in [59], here the assumption is

for the Fisher information matrix, due to a different loss function −l(β) here.
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4.4.2 Finite Sample Bounds

Theorem 4.4.3 (Oracle property). Under the Assumptions 4.4.1 and 4.4.2, let τ ∗ = min1≤i≤p τi.

For any optimal solution β̂ of problem (4.4), we have

1

n

{
l(β0)− l(β̂)

}
≤ λ2KG,τ

κ
, ‖β̂ − β0‖2 ≤

λ
√
pKG,τ

κτ ∗
.

4.4.3 Asymptotic Normality

Theorem 4.4.4 (Asymptotic Normality). When dimension p is fixed, assume
√
nλ → 0

and τj = O(1) for each j ∈ J0, nγ+1/2λ → ∞, uJc
0
6= 0, and lim infn→∞ n

−γ/2τj > 0 for

each j ∈ J c0 , under Assumptions 4.4.2 (1), we have as n→∞,

√
n(β̂J0 − β0

J0
)

d→ N(0, IJ0(β0)−1), β̂Jc
0

d→ 0.

4.5 Simulation Study

To evaluate the performance of the graph regularizer for the Cox model, it is compared with

some existing regularizers for the Cox model, including the classical lasso [47, 41], ridge

regression [48], elastic net [49, 50], smoothly clipped absolute deviation (SCAD) [51, 52],

and adaptive lasso (Alasso) [53, 54].

The regularized survival models are evaluated on the following performance measures:

• `2 error of the estimated coefficients: ‖β̂ − β0‖2;

• Relative prediction error (RPE):

RPE =
1

Ntest

(β̂ − β0)TXT
testXtest(β̂ − β0),

where Ntest is the test data size and Xtest are the test covariates;

• Harrell’s concordance index (c-index)[42]. The c-index is a commonly used metric
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for evaluating survival prediction models. It measures the ability of the model to

correctly predict the ranking of the survival time given a pair of new observations

and is equivalent to the AUC (Area Under Curve) [65]. A c-index of 0.5 is equivalent

to random guessing and 1 is perfect prediction. In recent survival applications, a

c-index between 0.6 and 0.7 is often considered satisfactory [45].

• Non-zero match ratio (NMR) and Zero match ratio (ZMR):

NMR =
|{i, j} : Ωij 6= 0, β̂i 6= 0, β̂j 6= 0}|
|{i, j} : Ωij 6= 0, β0

i 6= 0, β0
j 6= 0}|

;

ZMR =
|{i, j} : Ωij 6= 0, β̂i = 0, β̂j = 0}|
|{i, j} : Ωij 6= 0, β0

i = 0, β0
j = 0}|

.

NMR examines whether the estimated coefficients of a pair of connected (Ωij 6= 0)

variables useful (β0
i 6= 0, β0

j 6= 0) in simulating the survival outcomes are both

nonzero (β̂i 6= 0, β̂j 6= 0), and ZMR examines whether the estimated coefficients of

a pair of connected (Ωij 6= 0) variables with no influence (β̂i = 0, β̂j = 0) on the

simulated survival outcomes are both zero (β̂i = 0, β̂j = 0). Intuitively, the NMR

measures the degree to which the model can identify useful variable relations, and

the ZMR checks whether the model can discard non-informative variable relations.

Three types of predictor graph topologies are tested in the simulation study: (1) the

sparse graph, (2) the ring graph, and (3) the graph with communities. Figure 4.1 shows

illustrations that represent the three graph topologies.

The proposed graph regularizer shows overall the most promising performance among

the regularizers for the Cox model that are tested in the simulation study and the real-data

study.
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Figure 4.1: Illustration of the three predictor graph topologies in the simulation: the sparse
graph, the ring graph, and the graph with three communities.

4.5.1 The Sparse Graph

Consider a sparse Erdos-Renyi predictor graph with a small edge formation probability

p0. Assume the predictors (X1, X2, . . . , Xp)
T ∼ N(0,Ω−1), where p = 100 and Ω is an

inverse covariance matrix whose off-diagonal entries equal 0.5 with probability 0.01 and

0 otherwise. In practice, we compute Σ = Ω−1 using the nearPD transformation in the

R matrix package [66] to ensure that Σ is positive definite. Let the true parameters be

β0 = ΩΣxy, where Σxy = (c1, c2, . . . , cp)
T . Let ci = 10 for the top 4 predictors with

maximum edges, and ci = 0 otherwise. The experiment is similar to that in [59].

The survival time is simulated using the R coxed [67] package with a censor rate of 0.3.

The train size is 100 and the test size is 400. The hyper-parameters in each model are tuned

by cross validation using the training data. The experiment is repeated 50 times, and the

results (mean and standard deviation) of the models are shown in Table 4.1, 4.2, and 4.3

for p0 = 0.01, 0.05, 0.1 respectively.

Results

We observe that, when the predictor graph takes the form of a sparse Erdos-Renyi graph,

the graph lasso has higher performance on the `2 error, the RPE, and the c-index, than

other regularizers and baseline models, regardless of the edge formation probability. On

the NMR, other than the ridge regression and the baseline Cox model, whose estimated
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coefficients are mostly non-zeros and are hence biased, the proposed graph lasso penalty

has the highest performance. The graph lasso also has competent ZMR result. Ridge and

the baseline Cox model sacrifice the ZMR for the NMR and fail to discard the unimportant

variables.

As the edge formation probability p0 increases, the performance of all models is re-

duced compared to their own when p0 is smaller. Nevertheless, the graph lasso penalty

consistently acquires better estimation and prediction than the other models regardless of

the change in p0.

Table 4.1: Performance on the sparse Erdos-Renyi predictor graph, p0 = 0.01.

Model `2 norm RPE c-index NMR ZMR
Graph lasso 28.73(0.39) 415.98(28.90) 0.74 (0.042) 0.12(0.12) 0.92(0.093)

Lasso 30.29(0.12) 501.58(29.52) 0.66 (0.042) 0.056(0.096) 0.94(0.088)
Ridge regression 30.37(0.34) 504.85(29.59) 0.60 (0.023) 1.00(0.00) 0.71(0.28)

Elastic net 30.30(0.084) 502.24(29.71) 0.66(0.042) 0.086(0.12) 0.91(0.098)
SCAD 30.33(0.088) 503.29(29.75) 0.66(0.048) 0.028(0.040) 0.98(0.030)
Alasso 30.40(0.016) 505.69(29.64) 0.62 (0.074) 0.056(0.096) 1.00 (0.0052)
β̂ = 0 30.41(0.00) 506.34(29.70) 0.50 (0.00) 0.00(0.00) 1.00(0.00)

Cox without penalty Inf (-) 7.54× 107(4.00× 108) 0.53 (0.044) 1.00(0.00) 0.00(0.00)

Table 4.2: Performance on the sparse Erdos-Renyi predictor graph, p0 = 0.05.

Model `2 norm RPE c-index NMR ZMR
Graph lasso 41.94(0.46) 576.57(50.28) 0.70(0.034) 0.044(0.062) 0.93(0.063)

Lasso 42.28(0.15) 585.81 (49.80) 0.68(0.034) 0.068(0.083) 0.88(0.12)
Ridge regression 42.37(0.052) 589.49(50.06) 0.66(0.034) 1.00(0.00) 0.55(0.36)

Elastic net 42.27(0.15) 585.59(50.79) 0.67(0.033) 0.105(0.11) 0.807(0.17)
SCAD 42.37(0.092) 589.25(49.98) 0.68(0.048) 0.0056(0.014) 0.97(0.048)
Alasso 42.43(0.020) 590.93 (50.03) 0.62 (0.06) 0.068(0.083) 0.97(0.061)
β̂ = 0 42.41(0.00) 591.73 (50.11) 0.50 (0.00) 0.00(0.00) 1.00(0.00)

Cox without penalty Inf (-) 5.04× 108(1.59× 109) 0.57(0.054) 0.97(0.088) 0.0053(0.019)

4.5.2 The Ring Graph

The second experiment is on a ring predictor graph where the variables are nodes on the

ring and each node is connected to its immediate two neighbors. Let (X1, X2, . . . , Xp)
T ∼

N(0,Ω−1), where p = 100. Let Ω = B+δI , whereBij = 0.5 for |i−j| < 2 andBii = 0, δ
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Table 4.3: Performance on the sparse Erdos-Renyi predictor graph, p0 = 0.1.

Model `2 norm RPE c-index NMR ZMR
Graph lasso 59.99(0.55) 869.37(58.42) 0.70(0.034) 0.020(0.027) 0.97(0.054)

Lasso 60.46(0.19) 885.81(58.62) 0.68(0.033) 0.038(0.055) 0.88(0.14)
Ridge regression 60.57(0.055) 890.19(58.15) 0.66(0.032) 1.00(0.00) 0.63(0.40)

Elastic net 60.47(0.15) 886.21(58.73) 0.68(0.033) 0.058(0.065) 0.84(0.16)
SCAD 60.57(0.058) 889.94(58.00) 0.67(0.039) 0.0042(0.0068) 0.98(0.031)
Alasso 60.60(0.025) 891.45 (58.00) 0.61 (0.064) 0.038(0.055) 0.96(0.058)
β̂ = 0 60.62(0.00) 892.38(57.97) 0.50 (0.00) 0.00(0.00) 1.00(0.00)

Cox without penalty Inf (-) 5.54× 109(2.70× 1010) 0.54(0.049) 0.82(0.21) 0.024(0.029)

is chosen to make the condition number of Ω equal to p. Let the true parameter β0 = ΩΣxy,

where Σxy = 1. The ZMR is not calculated as it is not applicable in the ring graph setting.

Results

We observe that the graph lasso has the best performance on the `2 norm, the RPE, and

the c-index when the predictor graph is a ring graph. The NMRs for the ridge regression

and the baseline Cox model are high since their estimated coefficients are mostly non-zeros.

The competing models have close performance as the graph lasso since the relations among

the variables in the ring graph are relatively simple.

Table 4.4: Performance on the ring predictor graph.

Model `2 norm RPE c-index NMR
Graph lasso 23.82(0.23) 232.78(16.62) 0.68(0.032) 0.020(0.026)

Lasso 23.98(0.045) 235.41(16.03) 0.66(0.035) 0.0060(0.016)
Ridge regression 23.97(0.037) 235.24(16.14) 0.66(0.038) 1.00(0.00)

Elastic net 23.96(0.083) 235.17(16.35) 0.66(0.035) 0.020(0.053)
SCAD 24.00(0.0092) 235.65(16.00) 0.61(0.034) 0.00022(0.0015)
Alasso 24.00(0.0039) 235.68 (16.03) 0.55 (0.040) 0.006(0.016)
β̂ = 0 24.00(0.00) 235.70(16.03) 0.50 (0.00) 0.00(0.00)

Cox without penalty Inf (-) 2.07× 105(3.60× 105) 0.55(0.044) 0.99(0.0095)

4.5.3 The Graph with Communities

Suppose some of the predictors have community identities, and for predictors in the same

community, an edge forms with probability pinner. For predictors in different communities

or those not in any communities, let the probability of edge formation among them be
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pouter. Let pinner = 0.5, 0.7, 0.9, and pouter = 0.01. For dimension p = 100, we assume

there exist three communities, each with size 30. The performance comparison is in Table

4.5, 4.6, and 4.7 for pinner = 0.5, 0.7, and 0.9 respectively.

Results

We observe that the graph lasso penalty has the best `2 norm and c-index regardless of the

value of pinner. As pinner increases, the communities become more dense, and the relations

among the variables become more complex. Therefore, it is more difficult for the models to

acquire accurate estimation and prediction. The competing models have close performance

as the graph lasso.

Table 4.5: Performance on the 3-community predictor graph, pinner = 0.5.

Model `2 norm RPE c-index NMR ZMR
Graph lasso 59.80(0.75) 746.56(78.63) 0.70(0.036) 0.011(0.010) 0.98(0.040)

Lasso 60.56(0.058) 770.61(77.78) 0.66(0.031) 0.0074(0.012) 0.92(0.11)
Ridge regression 60.60(0.029) 772.13(76.88) 0.64(0.034) 1.00(0.00) 0.70(0.34)

Elastic net 60.55(0.081) 769.99(77.67) 0.66(0.032) 0.027(0.047) 0.87(0.17)
SCAD 60.60(0.028) 772.26(77.00) 0.64(0.036) 0.0014(0.0021) 0.98(0.055)
Alasso 60.62(0.0057) 773.20 (76.98) 0.57(0.043) 0.0074(0.012) 0.98(0.049)
β̂ = 0 60.62(0.00) 773.48(76.91) 0.50 (0.00) 0.00(0.00) 1.00(0.00)

Cox without penalty Inf (-) 1.40× 106(5.16× 106) 0.54(0.055) 0.82(0.21) 0.024(0.029)

Table 4.6: Performance on the 3-community predictor graph, pinner = 0.7.

Model `2 norm RPE c-index NMR ZMR
Graph lasso 77.74(0.53) 737.92(43.31) 0.70(0.044) 0.0042(0.0046) 0.98(0.032)

Lasso 78.40(0.035) 734.13(41.24) 0.64(0.044) 0.0055(0.0099) 0.95(0.087)
Ridge regression 78.40(0.024) 734.50(41.13) 0.62(0.038) 1.00(0.00) 0.79(0.31)

Elastic net 78.40(0.028) 734.25(41.16) 0.64(0.043) 0.010(0.020) 0.94(0.11)
SCAD 78.41(0.026) 734.72(41.09) 0.61(0.040) 0.0010(0.0023) 0.98(0.040)
Alasso 78.42(0.0041) 735.14(40.98) 0.54 (0.038) 0.0055(0.0099) 0.99(0.020)
β̂ = 0 78.42(0.00) 735.27(40.96) 0.50 (0.00) 0.00(0.00) 1.00(0.00)

Cox without penalty Inf (-) 1.81× 106(1.03× 107) 0.55(0.051) 1.00(0.00) 0.024(0.029)
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Table 4.7: Performance on the 3-community predictor graph, pinner = 0.9.

Model `2 norm RPE c-index NMR ZMR
Graph lasso 90.06(0.43) 875.48(88.090) 0.68(0.041) 0.0203(0.027) 0.98(0.032)

Lasso 90.55(0.017) 834.60(60.21) 0.611(0.037) 0.0018(0.0056) 0.97(0.0483)
Ridge regression 90.55(0.0094) 834.54(60.27) 0.55(0.027) 1.00(0.00) 0.90(0.18)

Elastic net 90.55(0.020) 834.48(60.10) 0.61(0.038) 0.0029(0.0083) 0.96(0.070)
SCAD 90.55(0.0076) 834.71(60.25) 0.55(0.029) 5.13× 10−5(0.00025) 1.00(0.020)
Alasso 90.55(0.0016) 834.84 (60.19) 0.53 (0.038) 0.0018(0.0056) 1.00(0.012)
β̂ = 0 90.55(0.00) 834.87(60.19) 0.50 (0.00) 0.00(0.00) 1.00(0.00)

Cox without penalty Inf (-) 2.80× 108(1.61× 109) 0.54(0.045) 0.99(0.051) 0.00(0.00)

4.6 Real Data Examples

4.6.1 The Pediatric Kidney Transplant Data

Predicting the survival time for transplant recipients is a crucial task for the transplant com-

munity. Accurate survival prediction can provide useful information for organ allocation

decisions. A challenge with transplant survival prediction is that the data recorded for each

transplant case are usually high dimensional and highly dependent. Therefore, building a

predictor graph and and using the graph regularizer can be especially beneficial for solving

the variable selection problems when building survival prediction models.

We use the proposed graph regularized Cox model to predict the survival time of pedi-

atric recipients of kidney transplants. The dataset we use contains 19,236 pediatric kidney

transplant cases in the U.S. from 1987 to 2014, and for each transplant case, 487 predictors

are recorded. The dataset is provided by the UNOS (United Network for Organ Sharing).

Depending on the donor type, which is shown to be a significant variable influencing the

post-transplant survival time for kidney transplant recipients [26, 36], the dataset is divided

into two datasets marked with different donor types. For the data of each donor type,

we develop the proposed graph penalized Cox model and compare it with some existing

penalized Cox models. We process the data as described in the previous chapter, using steps

including feature engineering, data heterogeneity detection, and missing data imputation.

The prepared data dimension is 3905 × 66 for deceased donors and 5444 × 42 for living

donors. Counting the different levels of the categorical variables, we have in total 145
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variables for transplant cases with deceased donors and 98 variables for living donors. The

variables and their definitions are found in Appendix A.

To use the graph penalty, we construct a predictor graph from the data where each

numerical variable and each categorical variable level is a node, and their connectivities

are represented by the formation of edges. One way to create a predictor graph is the

following. We form edges for variables as follows.

1. Numerical predictors with significantly high inverse covariance (see Figure 4.2, 4.3).

We connect variables pairs whose Pearson’s test p-value is 0.01 or lower.

2. Levels of categorical variables that measure similar traits of the transplant recipient

and donor. As an example, we connect the variable “HBV: positive” (Recipient HBV

infection status: Positive) and “HBV DON: positive” (Donor HBV infection status:

Positive). This connection is based on our assumption that being in similar conditions

as the donor is beneficial for the survival of an organ transplant recipient.

3. The different levels under the same categorical variable, similarly as in group lasso.

As a result, we derive the graphical structure for the predictors in the pediatric kidney

transplant data in Table 4.8, 4.9.

We use 5-fold cross validation to test the models. The performance of the graph reg-

ularized Cox model is compared with some other current regularizers in Table 4.10 and

Figure 4.4, 4.5. The blue line in each figure is the median of the graph regularized model,

and the red line is the 0.5 reference line for making valid prediction. Since the true pa-

rameters are unknown in the real data, we only compute the c-index. We observe that the

graph regularizer has the highest mean and median c-index for both donor types. The im-

provement of using the graph lasso is more prominent on the living donor dataset. This

result is possible due to the fact that the living donor is more often related to the recipient

and is likely to have closer biological and environmental characteristics as the recipient.

More variables are also recorded from the living donors than from the deceased donors in
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Figure 4.2: Inverse covariance of the numerical variables in the living donor dataset. The
asterisked pairs have Pearson’s test p-value 0.01 or lower.

Figure 4.3: Inverse covariance of the numerical variables in the deceased donor dataset.
The asterisked pairs have Pearson’s test p-value 0.01 or lower.
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Table 4.10: The performance of different penalties on the pediatric kidney transplant data.

Model Living donors c-index Deceased donors c-index
Graph lasso 0.59(0.045) 0.58(0.055)

Lasso 0.57(0.039) 0.57(0.055)
Ridge regression 0.49(0.039) 0.56(0.060)

Elastic net 0.57(0.038) 0.58(0.045)
SCAD 0.57(0.028) 0.57(0.056)
Alasso 0.57 (0.040) 0.57 (0.049)

Group lasso 0.57(0.051) 0.57(0.038)
Cox without penalty 0.49(0.039) 0.55(0.058)

β̂ = 0 0.50(0.00) 0.50(0.00)

the dataset. Therefore, the living donor predictor graph we can create is more complicated

than the deceased donor’s, which gives the graph lasso regularizer more advantage over

other penalties in predicting the survival outcome for pediatric recipients of living donor

kidneys.

The variables selected by the models with different penalties also differ. Specifically,

we compare the variables selected by the graph lasso and the group lasso. The comparison

is in Table 4.11 for the deceased donors and Table 4.12 for the living donors. The complete

variable definition is in Appendix A.

We first discuss the variables selected in the survival prediction models for pediatric

recipients of deceased donor kidneys. For the graph lasso, we show variables whose av-

erage coefficients in the cross validation are less than 0.1, and there are 8 such variables.

If we apply the same threshold for the group lasso model, we find 60 out of the total

145 variables. In this sense, the graph lasso is much more effective in variable selection

than the group lasso. To make further comparison of the specific variables selected by

the two models, for the group lasso, we raise the average coefficient threshold to 0.5 to

narrow down to 13 variables. When we compare these variables with the ones selected

by the graph lasso, we see 4 common ones: DEATH MC DON (deceased donor mecha-

nism of death), DRUGTRT COPD (recipient drug treated COPD (chronic obstructive pul-

monary disease) at registration yes/no), EDUCATION (recipient educational level), IN-
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Figure 4.4: The boxplot of the model c-indices on the living donor dataset.

OTROP SUPPORT DON (deceased donor inotropic medication at procurement yes/no),

although the specific levels selected are different (see Table 4.11).

For living donors, the graph lasso selects 31 out of the total 98 variables, and the group

lasso selects 62. The variables with coefficients larger than 0.05 in both models are in Table

4.12. The commonly selected variables include CITIZENSHIP DON (donor citizenship),

DIAG KI (recipient kidney diagnosis): TUBULAR AND INTERSTITIAL DISEASES and

HCV DON (donor Hepatitis C infection status): Unknown, and REGION (recipient UNOS

region).

Notice that the variables selected by the group lasso penalty here are somewhat different

from the ones in the previous chapter. This is due to the reason that, in the previous chapter,

in addition to statistical properties, we also considered medical knowledge when selecting

variables. Furthermore, we chose different hyper-parameter thresholds. The threshold in

this chapter is chosen for the variable comparison of the graph and the group lasso, while

the threshold in the last chapter was chosen so that the group lasso model could be com-

pared with the other models in the same context. Lastly, due to the correlation among the
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Figure 4.5: The boxplot of the model c-indices on the deceased donor dataset.

variables, it is possible that one of several variables with the same hidden cause is selected

as a representative.

4.6.2 The Primary Biliary Cirrhosis Sequential (pbcseq) Data

The pbcseq data [68, 69] in the R survival package [70] are recorded by the Mayo Clinic

to study the primary biliary cirrhosis (PBC) of the liver from 1974 to 1984. It contains the

information of 1945 patients and 17 predicting variables. Definitions of the variables can

be found in Table B.1 in Appendix B.

To create a predictor graph, we analyze the relations of the variables in the pbcseq

dataset. For the numerical variables, we compute their inverse covariance (shown in Figure

4.6). We connect pairs of variables if their Pearson’s test p-value is less than 0.05 [71]. The

connected variable pairs are asterisked in Figure 4.6. The predictor graph of the numerical

variables is illustrated in Figure 4.7. For the categorical variables, we connect variables

representing different levels under the same categorical variable. As a result, we can obtain
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Figure 4.6: The inverse covariance of the numerical variables in the pbcseq dataset. The
asterisked (*) variable pairs are significantly dependent.

Figure 4.7: The predictor graph of the numerical variables in the pbcseq dataset.

the variable neighborhood relations in Table 4.13.

We compare the performance of the graph penalty to the other penalties using 10-fold

cross validation on the pbcseq dataset. Since this is a real data problem and the true param-

eters are unknown to us, only the c-index can be computed. The results are shown in Table
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Table 4.13: Numerical variables and their neighbors in the pbcseq dataset.

Variable Neighbors
age albumin, ast
bili chol, albumin, ast, platelet, protime
chol bili, alk.phos, ast, platelet, protime
albumin age, bili, ast, platelet, protime
alk.phos chol, ast, platelet
ast age, bili, chol, albumin, alk.phos, platelet
platelet bili, chol, albumin, alk.phos, ast, protime
protime bili, chol, albumin, platelet

4.14 and Figure 4.8, where the blue reference line in the figure is the median of the graph

lasso c-index.

As shown in Table 4.14, the graph lasso has the highest c-index on the pbcseq dataset.

The ridge regression, the elastic net, and the SCAD penalties also have good performance.

The boxplot shows that, the graph lasso penalty has the highest median c-index. The ridge

regression and the elastic net have about the same median c-index as the graph lasso, but

their distributions of the c-index are lower than the graph lasso.

Therefore, we can conclude that the graph lasso penalty has satisfactory performance

on the pbcseq dataset, although its performance improvement is limited by the fact that the

problem is not high-dimensional (p = 17) and the graphical structure among the variables

is relatively simple.

Table 4.14: The performance of different penalties on the pbcseq dataset.

Model c-index
Graph lasso 0.88 (0.086)

Lasso 0.86 (0.082)
Ridge regression 0.87 (0.092)

Elastic net 0.87 (0.085)
SCAD 0.87 (0.079)
Alasso 0.86 (0.088)

Group lasso 0.86 (0.076)
Cox without penalty 0.83 (0.098)

β̂ = 0 0.50 (0.00)
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Figure 4.8: The boxplot of the model c-indices on the pbcseq dataset.

4.7 Discussion

In this chapter, we developed a graph-based penalty for the Cox proportional hazard model,

called the graph lasso. It takes the advantage of the structure of predictors and makes effec-

tive variable selection by selecting correlated predictors together. The predictor relations

can be determined numerically or by domain knowledge, and the relations are summarized

in a graph, where correlated predictors are connected by edges. Hence the name graph

lasso. We formulated the graph penalized problem and decomposed the penalty term to

transform the problem into one that could be solved using existing solvers of the group

lasso problem. Essentially, by using the predictor graph, we re-defined the “groups” in

the group lasso problem. Furthermore, one predictor can belong to multiple “groups” at a

time, and the overall predictor structure is much more complex than in group lasso. We can

flexibly experiment with the predictor relations by making changes to the predictor graph,

and find out the effect on the model’s estimation and prediction accuracy.

We demonstrated the theoretical performance guarantee of the proposed graph lasso

63



www.manaraa.com

penalty, and showed its efficacy using simulation as well as real data examples. In both

simulation and real data studies, the graph lasso showed overall the most promising perfor-

mance when compared to the other prevalently used penalties for the Cox model.

A direction worthy of further study is developing a computationally more efficient algo-

rithm for solving the graph lasso problem, which can be costly to solve when the problem

dimension becomes extremely high.

Variable selection has been an especially critical task in survival analysis, where the

variable dimension is often high and the variable relations are complicated. The problems

of correlated variables and paired variables often arise in survival studies. The introduction

of new regularization methods such as the graph lasso could contribute to solving these

problems in a more elegant way.
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CHAPTER 5

CONCLUSION

The thesis focuses on the statistical detection and survival analysis for some complicated

data types, including network data, censored data, and graphical data. In Chapter 2, we

propose to use the graph-scan statistic to detect the local change in a sequence of network

data. We develop a parametric statistic and a non-parametric statistic, derive the theoreti-

cal false-alarm rates, and apply the statistic to detect a subgraph change in a sequence of

seismic sensor networks. In Chapter 3, we study survival analysis in an applied healthcare

problem of pediatric kidney transplant, and the goal is to make prediction for the survival

time until an event happens. Survival analysis can be seen as a type of change-detection,

where the change or abnormality happens when the survival event of interest takes place.

The data in survival analysis are usually recorded as censored data, and dedicated models,

such as the Cox model and the random survival forest model, are used for analyzing cen-

sored data. When analyzing the pediatric kidney transplant data, we notice that the data

are high-dimensional, and many variables are correlated or paired. The predictor structure

inspires us to develop a new variable selection method for the Cox model, which we call

the graph lasso. In Chapter 4, we develop the graph-based lasso penalty formulation, derive

its performance guarantees, and compare it with some existing penalties in simulation and

real data examples.

Complicated data types are not only challenges in statistical problems, but also new

opportunities for theory and methodology development. In a world where the data could

be noisy, missing, censored, high-dimensional, correlated, paired, or graphical, and where

all models the greatest statisticians ever proposed could be wrong, we strive to make some

useful statistical estimation, inference, and prediction and contribute a tiny bit to homo

sapiens’ understanding of the world.
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Appendices
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APPENDIX A

CHAPTER 3: PEDIATRIC KIDNEY TRANSPLANT SURVIVAL ANALYSIS

USING STATISTICAL MACHINE LEARNING
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Table A.1: Feature engineering details for the pediatric kidney transplant dataset.

Create new variables:

1. TX YR (transplant year). It captures information in TX DATE, transplant date.

2. YRS DIAL (years on dialysis). It is determined by subtracting DIAL DATE
(dialysis date) from TX DATE (transplant date) and rounding it to the nearest
year.

Combine variables measuring the same condition of a transplant recipient or
donor:

1. ANY DIAL (any dialysis prior to the transplant). It combines DIAL TRR
(dialysis at transplant) and DIAL TCR (dialysis at registration), and is “Y” if
either of the two is “Y”, and “N” otherwise.

2. ANY PRIVATE (any private insurance utilized for the transplant). It combines
PRI PAYMENT TRR KI, SECONDARY PAY TRR KI,
PRI PAYMENT TCR KI, and SECONDARY PAY TCR KI, and is “Y” if any
of the them is “Y”, and “N” otherwise.

3. CMV (cytomegalovirus infection status). It combines two lab test results:
CMV IGG and CMV IGM, and is “Y” if either of the two is “Y”, and “N”
otherwise.

4. HBV (recipient hepatitis B virus infection status). It combines the lab test
results of HBV CORE and HBV SUR ANTIGEN following the guidelines
from the CDC [72].

5. HBV DON (donor hepatitis B virus infection status). It combines
HBV CORE DON, HBSAB DON, and HBV SUR ANTIGEN DON
following the guidelines from the CDC [72].

Living donor specific variables:

1. CMV DON L (living donor CMV status). It combines the test results of
CMV IGG DON, CMV IGM DON, CMV OLD LIV DON, and
CMV NUCLEIC DON. CMV DON L is positive if any of the variables is
positive. Otherwise the CMV IGG DON test result is used. (The deceased
donor dataset has the variable: CMV DON, which is missing for the majority
of samples in the living donor dataset ).

2. HCV DON (living donor hepatitis C virus infection status). It combines
HCV ANTIBODY DON, HCV RIBA DON, and HCV RNA DON following
the guidelines from the CDC [73].
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...continued table

Group the categories of some categorical variables

1. DIAG KI (recipient kidney diagnosis). It originally contains 69 categories. We
group the variables according to OPTN specifications [74], and remove
categories with sample size smaller than 10. The number of categories in
DIAG KI are reduced to 10.

2. FUNC STAT TRR (recipient functional status at transplant). We group the
functional status categories and convert them to numerical values that reflect the
wellness of the transplant recipient. The conversion from categorical functional
status to numerical values are in Table A.2.

Living donor specific variables:

1. LIV DON TY (living donor type). It originally has 15 categories, and we
group the categories into 4. Some of the categories have limited number of
samples and we group them with other similar categories. The new categories
are Bio-Other, Bio-Parent, Bio-Sibling, and Non-Biological.

2. REGION DON (living donor geographical region). It maps
HOME STATE DON to the corresponding UNOS region.
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Table A.3: Features in the deceased donor dataset after data pre-processing. These 84
features are the candidate features for statistical variable selection.

Features for both the recipient and the donor (27 features):

1. AGE (recipient age), AGE DON (donor age)

2. AMIS (recipient and donor HLA (Human Leukocyte Antigen) -A locus
mismatch status), BMIS (HLA-B locus mismatch status), HLAMIS (HLA
mismatch status), DRMIS (HLA-DR mismatch status)

3. BMI CALC (recipient calculated BMI (Body Mass Index)), BMI DON CALC
(donor calculated Body Mass Index)

4. CITIZENSHIP (recipient citizenship), CITIZENSHIP DON (donor
citizenship).

5. CMV (recipient CMV (cytomegalovirus) infection status), CMV DON L
(donor CMV infection status).

6. CREAT TRR (recipient creatinine level at transplant), CREAT DON (donor
creatinine level)

7. DIAB (recipient diabetes status), DIABETES DON (donor diabetes status)

8. ETHCAT (recipient ethnicity), ETHCAT DON (donor ethnicity)

9. GENDER (recipient gender), GENDER DON (donor gender)

10. HCV SEROSTATUS (recipient hepatitis C infection status),
HCV C ANTI DON (donor hepatitis C infection status)

11. PERM STATE (recipient state of residency), HOME STATE DON (donor
home state)

12. REGION (recipient UNOS region), REGION DON (donor UNOS region)

13. SHARE TY (organ share type, i.e. local, regional, or national)
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...continued table

Recipient features (21 features):

1. ANY DIAL (dialysis yes/no)

2. ANY PRIVATE (any private insurance available yes/no)

3. CURRENT PRA (current PRA (Panel Reactive Antibodies) level)

4. DAYSWAIT CHRON KI (total days on the kidney waiting list)

5. DIAG KI (kidney diagnosis)

6. DRUGTRT COPD (drug treated COPD (chronic obstructive pulmonary
disease) at registration yes/no)

7. EDUCATION (education level)

8. END STAT KI (kidney status at the time of the transplant)

9. EXH PERIT ACCESS (exhausted vascular access at registration yes/no)

10. EXH VASC ACCESS (exhausted peritoneal access at registration yes/no)

11. FUNC STAT TRR (functional status at transplant)

12. HBV (hepatitis B infection status)

13. MALIG (any previous malignancy yes/no)

14. MED COND TRR (medical condition at transplant)

15. NPKID (number of previous kidney transplants)

16. PAYBACK (transplant as the result of a payback yes/no)

17. PERIP VASC (peripheral vascular disease at registration yes/no)

18. PREV TX (previous kidney transplant yes/no)

19. TX PROCEDUR TY KI (transplant procedure type, i.e. left or right kidney)

20. TX YR (transplant year)

21. YRS DIAL (years on dialysis)

76



www.manaraa.com

...continued table

Donor features (36 features):

1. ANTICONV DON (deceased donor - anticonvulsants within 24 hours pre-cross
clamp yes/no)

2. ANTIHYPE DON (deceased donor - antihypertensives within 24 hours
pre-cross clamp yes/no)

3. BLOOD INF DON (deceased donor - blood as infection status yes/no)

4. BUN DON (deceased donor - terminal blood urea nitrogen level)

5. CANCER SITE DON (deceased donor - cancer site yes/no)

6. CARDARREST NEURO (deceased donor - cardiac arrest post brain death
yes/no)

7. CLIN INFECT DON (deceased donor - clinical infection yes/no)

8. COLD ISCH KI (kidney cold ischemic time)

9. DDAVP DON (deceased donor - synthetic anti diuretic hormone (DDAVP)
yes/no)

10. DEATH CIRCUM DON (deceased donor - circumstance of death)

11. DEATH MC DON (deceased donor - mechanism of death)

12. DISTANCE (miles from donor hospital to transplant center)

13. DON RETYP (deceased donor - retyped at transplant center yes/no)

14. HIST CANCER DON (deceased donor - history of cancer yes/no)

15. HIST CIG DON (deceased donor - history of cigarettes in past > 20 pack years
yes/no)

16. HIST COCAINE DON (deceased donor - history of cocaine use in the past
yes/no)

17. HIST HYPERTENS DON (deceased donor - history of hypertension yes/no)

18. HIST OTH DRUG DON (deceased donor - history of other drug use in the
past yes/no)

19. INOTROP AGENTS (deceased donor - inotropic agent support yes/no)
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...continued table

20. INOTROP SUPPORT DON (deceased donor - inotropic medication at
procurement yes/no)

21. INTRACRANIAL CANCER DON (deceased donor - intracanial cancer at
procurement yes/no)

22. LT KI BIOPSY (deceased donor - left kidney biopsy at recovery yes/no)

23. NON HRT DON (deceased donor - non heart beating donor yes/no)

24. PROTEIN URINE (deceased donor - protein in urine yes/no)

25. PT DIURETICS DON (deceased donor - diuretics B/N brain death within 24
hours of procurement yes/no)

26. PT STEROIDS DON (deceased donor - steroids B/N brain death within 24
hours of procurement yes/no)

27. PT T3 DON (deceased donor - triiodothyronine-t3 B/N brain death within 24
hours of procurement yes/no)

28. PT T4 DON (deceased donor - thyroxine-t4 B/N brain death within 24 hours of
procurement yes/no)

29. PULM INF DON (deceased donor - infection pulmonary source yes/no)

30. RT KI BIOPSY (deceased donor - right kidney biopsy at recovery yes/no)

31. SGOT DON (deceased donor - terminal SGOT/AST level)

32. SGPT DON (deceased donor - terminal SGPT/ALT level)

33. TATTOOS (deceased donor - tattoos yes/no)

34. TBILI DON (deceased donor - terminal total bilirubin level)

35. URINE INF DON (deceased donor - infection urine source yes/no)

36. VASODIL DON (deceased donor - vasodilators within 24 hours pre-cross
clamp yes/no)
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Table A.4: Features in the living donor dataset after data pre-processing. These 40 features
are the candidate features for statistical variable selection.

Features for both the recipient and the donor (18 features):

1. AGE (age), AGE DON (donor age)

2. HLAMIS (HLA (Human Leukocyte Antigen) mismatch level)

3. CITIZENSHIP (recipient citizenship), CITIZENSHIP DON (donor citizenship)

4. CMV (recipient CMV (cytomegalovirus) infection status), CMV DON L
(CMV (cytomegalovirus) infection status)

5. ETHCAT (recipient ethnicity), ETHCAT DON (donor ethnicity)

6. GENDER (recipient gender), GENDER DON (donor gender)

7. HAPLO TY MATCH DON (living donor-recipient haplo type match)

8. HBV (recipient hepatitis B infection status), HBV DON (donor hepatitis B
infection status)

9. HCV SEROSTATUS (recipient hepatitis C infection status), HCV DON (donor
hepatitis C infection status)

10. REGION (recipient UNOS region), REGION DON (donor UNOS region)
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... continued table

Recipient features (19 features):

1. ANY DIAL (dialysis yes/no)

2. ANY PRIVATE (any private insurance available)

3. BMI CALC (calculated BMI (Body Mass Index))

4. CREAT TRR (creatinine level at transplant)

5. DATA WAITLIST (waitlist data reported yes/no)

6. DIAB (diabetes status)

7. DIAG KI (kidney diagnosis)

8. DRUGTRT COPD (drug treated COPD (chronic obstructive pulmonary
disease) at registration)

9. EXH PERIT ACCESS (exhausted vascular access at registration yes/no)

10. EXH VASC ACCESS (exhausted peritoneal access at registration yes/no)

11. FUNC STAT TRR (functional status at transplant)

12. MALIG (any previous malignancy)

13. MED COND TRR (medical condition at transplant)

14. MRCREATG (recipient most recent creatinine greater than 2mg/dl at
registration)

15. PREV TX (previous transplant of kidney yes/no)

16. PRE TX TXFUS (number of pre-transplant transfusions at transplant)

17. TX PROCEDUR TY KI (transplant procedure type, left or right kidney)

18. TX YR (transplant year)

19. YRS DIAL (years on dialysis)

Donor features (3 features):

1. COLD ISCH KI (kidney cold ischemic time)

2. DISTANCE (miles from donor hospital to transplant center)

3. LIV DON TY (living donor relation to recipient)
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APPENDIX B

CHAPTER 4: GRAPH BASED VARIABLE SELECTION FOR SURVIVAL

ANALYSIS

B.1 Useful Lemmas

Lemma B.1.1 (Lemma A.1 in [lounici2009taking].). Let χ2
d to a chi-squared random vari-

able with d degrees of freedom, we have

P(χ2
d > d+ t) ≤ exp

(
−1

8
min{t, t

2

d
}
)
.

Can be replaced by other forms

Lemma B.1.2 (Subgradient conditions). A vector β ∈ Rp is a solution to the optimization

problem (4.4) if and only if β can be decomposed as β =
∑p

i=1 V
(i) where V (i) satisfy

that: ∀i, (a) V (i)
N c

i
= 0; (b) either V (i)

Ni
6= 0 and ∂

∂βNi
`(β) = nλτi

V
(i)
Ni

‖V (i)
Ni
‖2

, or V (i)
Ni

= 0 and

‖ ∂
∂βNi

`(β)‖2 ≤ nλτi.

Proof. This is a direct result from Lemma 11 in [62].

Lemma B.1.3 ([59]). For any predictor graph G and positive weights τi, suppose V (1),

V (2), . . ., V (p) is an optimal decomposition of β ∈ Rp, then for any S ⊆ {1, 2, . . . , p},

{V (j), j ∈ S} is also an optimal decomposition of
∑

j∈S V
(j).

B.2 Local approximation for partial likelihood function

Let T,C,x denote the survival time, censoring time and the associated covariates. Con-

sider the general setting that the covariate may vary with time x(t). The theory of count-

ing process can be used to express the log-likelihood function. More specifically, define

Ni(t) = 1{Ti ≤ t, Ti ≤ Ci} and Yi(t) = 1{Ti ≥ t, Ci ≥ t}, where 1{·} is the indicator
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function. Without loss of generality, we only consider the time horizon [0, 1]. The results

can be extended to interval [0,∞) [63]. For completeness, here we provide the method used

in [63] to express the log-likelihood function as a quadratic function in a n−1/2 neighbor-

hood of the true parameter β0. [63] has proved the consistency and asymptotic normality

of the maximum likelihood estimates of the parameter β0 when there is no penalty term.

It can be verified that the partial likelihood equals to

l(β) =
n∑
i=1

∫ 1

0

βTxi(s)dNi(s)−
∫ 1

0

log

{
n∑
i=1

Yi(s) exp(βTxi(s))

}
dN̄(s),

where N̄ =
∑n

i=1Ni.

Under assumptions 4.4.1, for each β in a neighborhood B of β0, we have [63]:

1

n
{l(β)− l(β0)} =∫ 1

0

[
(β − β0)T s(1)(β0, t)− log

{
s(0)(β, t)

s(0)(β0, t)

}
s(0)(β0, t)

]
h0(t)dt+OP (

‖β − β0‖√
n

).

Note that the first order derivative of the right hand side equals to 0 at β0. By Taylor’s

expansion, we have

1

n
{l(β)− l(β0)} = −1

2
(β − β0)T{I(β0) + oP (1)}(β − β0) +OP (n−1/2‖β − β0‖).

Define the scaled objective function with penalty as L(β) = −l(β) + nλ‖β‖G,τ . For

αn, if we can show that for any given ε > 0, there exists a large constant C such that

P

{
sup
‖u‖=C

L(β0 + αnu) > L(β0)

}
≥ 1− ε.

Then this will implie that with probability at least 1 − ε there exists a local minima in the

ball {β0 + αnu : ‖u‖ ≤ C}. Hence, there exists a local minimizer such that ‖β̂ − β0‖ =
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OP (αn). To show this, we first note that

1

n
{L(β0)− L(β0 + αnu)} =

1

n
{l(β0 + αnu)− l(β0)− λ [‖β0 + αnu‖G,τ − ‖β0‖G,τ ]} .

(B.1)
1

n
{l(β0 + αnu)− l(β0)} = −1

2
α2
nu

T{I(β0) + oP (1)}u+OP (n−1/2αn‖u‖).

The first term is of the order O(α2
nC

2), and the second term is of the order O(n−1/2αnC).

Now look at the penalty term, since ‖β0 + αnu‖G,τ ≥ ‖β0‖G,τ − αn‖u‖G,τ , we have

−λ [‖β0 + αnu‖G,τ − ‖β0‖G,τ ] ≤ λαn‖u‖G,τ .

If the term O(α2
nC

2) dominates the whole expression (B.1), then we have that there exists

a local minimizer β̂ of L(β) that is close to true parameter β0.

B.3 Proofs

Proof to Theorem 4.4.3. Suppose β̂ is the optimal solution to the regularization problem,

then for any β ∈ Rp, we have

− 1

n
l(β̂) + λ‖β̂‖G,τ ≤ −

1

n
l(β) + λ‖β‖G,τ .

Let β = β0, we have

1

n

{
l(β0)− l(β̂)

}
≤ λ

(
‖β0‖G,τ − ‖β̂‖G,τ

)
.
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Denote {S(1), S(2), . . . , S(p)} as an arbitrary optimal decomposition ofβ0 and {T (1), T (2), . . . , T (p)}

as an arbitrary optimal decomposition of β̂ − β0. We have β̂ − β0 =
∑p

i=1 T
(i). Thus

1

n

{
l(β̂)− l(β0)

}
= −1

2
(β̂ − β0)T{I(β0) + oP (1)}(β̂ − β0) +OP (n−1/2‖β̂ − β0‖)

= −1

2
(

p∑
i=1

T (i))T{I(β0) + oP (1)}(
p∑
i=1

T (i)) +OP (n−1/2‖
p∑
i=1

T (i)‖).

By Assumption 4.4.2 (1), we have S(j) = 0,∀j ∈ J c0 , thus

‖β0‖G,τ = ‖
∑
j∈J0

S(j)‖G,τ ,

and
‖β̂‖G,τ = ‖

∑
j∈J0

T (j) +
∑
j /∈J0

T (j) +
∑
j∈J0

S(j)‖G,τ

≥ ‖
∑
j /∈J0

T (j) +
∑
j∈J0

S(j)‖G,τ − ‖
∑
j∈J0

T (j)‖G,τ

= ‖
∑
j /∈J0

T (j)‖G,τ + ‖
∑
j∈J0

S(j)‖G,τ − ‖
∑
j∈J0

T (j)‖G,τ .

Therefore

‖β0‖G,τ − ‖β̂‖G,τ ≤ ‖
∑
j∈J0

T (j)‖G,τ − ‖
∑
j /∈J0

T (j)‖G,τ ≤ ‖
∑
j∈J0

T (j)‖G,τ =
∑
j∈J0

τj‖T (j)‖2,

(B.2)

where the final step is by Lemma 2, and

‖β0 − β̂‖G,τ = ‖
∑
j∈J0

T (j)‖G,τ + ‖
∑
j /∈J0

T (j)‖G,τ . (B.3)

By the definition of KG,τ , we have

1

n

{
l(β0)− l(β̂)

}
≤ λ

∑
j∈J0

τj‖T (j)‖2 ≤ λK
1/2
G,τ

√∑
j∈J0

τ 2
j ‖T (j)‖2

2.
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On the other hand, from the Assumption 4.4.2 (2), we have

1

n

{
l(β0)− l(β̂)

}
≥ κ

p∑
j=1

τ 2
j ‖T (j)‖2

2 ≥ κ
∑
j∈J0

τ 2
j ‖T (j)‖2

2.

Combine with the aforementioned equation, we have

1

n

{
l(β0)− l(β̂)

}
≤ λK

1/2
G,τ

√∑
j∈J0

τ 2
j ‖T (j)‖2

2 ≤
λK

1/2
G,τ√
κ

√
1

n

{
l(β0)− l(β̂)

}
,

which translates into the following:

1

n

{
l(β0)− l(β̂)

}
≤ λ2KG,τ

κ
.

Furthermore,

‖β̂ − β0‖2 = ‖
p∑
j=1

T (j)‖2 ≤
‖β̂ − β0‖G,τ

τ ∗
=

∑p
j=1 τj‖T (j)‖2

τ ∗

≤
√
p ·
√∑p

j=1 τ
2
j ‖T (j)‖2

2

τ ∗
≤
√
p

√
κτ ∗
·
√

1

n

{
l(β0)− l(β̂)

}
≤
λ
√
pKG,τ

κτ ∗
.

Proof to Theorem 4.4.4. For eachu ∈ Rp, defineQn(u) = −l(β0+ u√
n
)+nλ‖β0+ u√

n
‖G,τ .

Then we have

û =
√

(β̂ − β0) = arg min
u∈Rp

Qn(u).
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We also have

Qn(u)−Qn(0) = l(β0)− l(β0 +
u√
n

) + nλ(‖β0 +
u√
n
‖G,τ − ‖β0‖G,τ )

=
1

2
uT I(β0)u+ oP (1) + nλ(‖β0 +

u√
n
‖G,τ − ‖β0‖G,τ )

For the second term, we have

nλ(‖β0 +
u√
n
‖G,τ − ‖β0‖G,τ ) = nλ(‖(β0 +

u√
n

)J0‖G,τ − ‖β0‖G,τ + ‖( u√
n

)Jc
0
‖G,τ )

Suppose V (1), . . . , V (p) is an optimal decomposition of u, then we have

nλ(‖(β0 +
u√
n

)J0‖G,τ − ‖β0‖G,τ ) ≤
√
nλ
∑
j∈J0

τj‖V (j)‖2.

If
√
nλ→ 0 and τj = O(1) for each j ∈ J0, then for each fixed u, we have

nλ(‖(β0 +
u√
n

)J0‖G,τ − ‖β0‖G,τ )→ 0, as n→∞.

If nγ+1/2λ→∞, uJc
0
6= 0, and lim infn→∞ n

−γ/2τj > 0 for each j ∈ J c0 , then

nλ‖( u√
n

)Jc
0
‖G,τ =

√
nλ
∑
j∈Jc

0

τj‖V (j)‖2 = nγ+1/2λ · n−γ/2
∑
j∈Jc

0

τj‖V (j)‖2 →∞.

Hence, we have

Qn(u)−Qn(0)
d→


l(β0)− l(β0 + u√

n
) supp(u) ⊂ J0

∞ o.w.

This implies that β̂Jc
0

d→ 0. We note that û = arg minQn(u) = arg minQn(u) − Qn(0),

thus it suffices to show that the û = arg maxsupp(u)⊂J0 l(β0 + u√
n
) is asymptotically normal
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distributed. To prove this, denote the derivative of the partial log-likelihood with respect to

β as

U(β) =
n∑
i=1

∫ 1

0

xi(s)dNi(s)−
∫ 1

0

∑n
i=1 Yi(s)xi(s) exp{βTxi(s)}∑n

i=1 Yi(s) exp{βTxi(s)}
dN̄(s).

And the second order derivative as

S(β) = −
∫ 1

0

(∑n
i=1 Yi(s)xi(s)xi(s)

T exp{βTxi(s)}∑n
i=1 Yi(s) exp{βTxi(s)}

−
(∑n

i=1 Yi(s)xi(s)xi(s)
T exp{βTxi(s)}∑n

i=1 Yi(s) exp{βTxi(s)}

)2
)
dN̄(s).

Using taylor expansion, we have

U(β̂)− U(β0) = S(β∗)(β̂ − β0),

where β∗ is on the line segment between β̂ and β0, and −S(β) is a positive semidefinite

matrix. By Theorem 3.2 in [63], we have

1√
n
UJ0(β0)

d→ N(0, IJ0(β0)), − 1

n
S(β∗)

p→ N(0, I(β0)) as n→∞.

Since U(β̂) = 0, we have −S(β∗)(β̂−β0) = U(β0), thus by Slutsky’s Theorem, we have

√
nIJ0(β0)(β̂ − β0)

d→ N(0, IJ0(β0)),

which translates into
√
n(β̂J0 − β0

J0
)

d→ N(0, IJ0(β0)−1).
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B.4 Variable definitions in the real data examples.
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